Weibull Distribution Fitting

Expression

`f(x; a, b) = a/b(x/b)^(a-1)e^(-(x/b)^a)`

`a` : shape parameter
`b` : scale parameter

`f(x; a, b, r, m) = a/b((x-r)/b)^(a-1)e^(-((x-r)/b)^a)m`

`a` : shape parameter
`b` : scale parameter
`r` : location parameter. It shifts the graph to left or right.
`m` : magnification of vertical axis. It simply multiply the vertical axis values.

`f(x; a1, b1, a2, b2, r, m, c) = (c((a1)/(b1)((x-r)/(b1))^(a1-1)e^(-((x-r)/(b1))^(a1))) + (1-c)((a2)/(b2)((x-r)/(b2))^(a2-1)e^(-((x-r)/(b2))^(a2))))m`

`a1` : shape parameter of first component
`b1` : scale parameter of first component
`a2` : shape parameter of second component
`b2` : scale parameter of second component
`r` : location parameter. It shifts the graph to left or right.
`m` : magnification of vertical axis. It simply multiply the vertical axis values.
`c` : component ratio

Raw Datas( CSV or TSV format )
Calculation Settings
first component
`a1` ( shape parameter )
`b1` ( scale parameter )
second component
`a2` ( shape parameter )
`b2` ( scale parameter )
extra
`r` ( location parameter )
`m` ( magnification of vertical axis )
`c` ( component ratio )
Result

Memo